APPENDIX
A. Simulation Environments

In the simulation environments, we designed specific
settings for "Push-T", "Block-push", "Franka Kitchen" and
"grasp pose" to test our diffusion policy and inpainting
methods under various task conditions.

Push-T: A blue round end-effector pushes a gray T-
block towards a fixed green T-shaped target. Successful task
completion is based on the alignment between the T-block
and the target. The end-effector starts from the target’s top-
right, while the T-block starts from the bottom-left, each
with random positional and rotational deviations. The task
descriptions involve detouring the block from specified sides
(left, right, top, down), with unseen conditions being TOP
and DOWN due to the lack of demonstration trajectories
from these directions, which may cause the policy to fail by
colliding with the block.

Block-Push: This involves pushing red and green
blocks into designated target squares, structured in two
phases—moving one block followed by the other. Random
deviations in initial positions introduce unpredictability in
successful trajectories. Demonstrations exist for prioritizing
either block, forming the basis for task descriptions that dic-
tate the order of operations. Unseen tasks include non-existent
color blocks to test the algorithm’s response to erroneous
instructions and open-vocabulary tasks that challenge the
system’s interpretative flexibility.

Franka Kitchen: Comprising seven sub-tasks grouped
into three levels based on their locations, this environment

tests the robot arm’s ability to perform sequential tasks as

specified by the task descriptions. All single tasks are seen
during demonstrations, making them familiar, while multiple

tasks involve unseen sequences, especially when changing
from high to mid or low levels, or vice versa, challenging
the policy’s adaptability.

Grasp Pose Generation: This environment focuses on
the precise task of generating grasp poses for four different
objects: mugs, bottles, hammers, and forks. Each object has
associated tasks, divided into seen and unseen categories,
where the seen tasks involve specific, demonstrated grasping
actions, and the unseen tasks introduce new, potentially open-
vocabulary or challenging conditions.

The environment is designed to test the diffusion policy’s
ability to adapt its output (a 6D grasp pose) based on the
conditions provided by the task descriptions. Keyframes are
generated from the positions in 3D space, which guide the
policy in generating actions conditioned by the specific grasp
requirements. The key point here is the direct application of
conditions to the action generation through inpainting, which
does not involve temporal sequencing but rather focuses on
spatial accuracy and relevance.

Each environment utilizes a diffusion policy where actions
are determined by the 2D or 3D positions of keyframes
generated via vision-language models. This setup tests both
the precision of task execution based on seen instructions and
the flexibility of the system under unseen or open-vocabulary
conditions. The task descriptions for each environment are
listed in Table [l

TABLE I: Language Task Descriptions for Different Environments

block to its target.

Environment Seen Tasks Unseen Tasks

* Push the block to the target region and detour from | e Push the block to the target region and detour from
Push-T LEFT side. TOP side.

* Push the block to the target region and detour from | ¢ Push the block to the target region and detour from

RIGHT side. DOWN side.

;lz‘gf(htghftfg? QIOCk to the target, then the GREEN | | b 1o YELLOW block to the target, then the
Block-push gen BLUE block to its target.

* Push the GREEN block to the target, then the RED

* Push two blocks to targets in any sequence.

Franka Kitchen

single-task Kitchen environment.)

* Complete task A. (A is one of the sub-tasks in the

Franka Kitchen
multli-task

* Complete task A, then task B.

(Demonstrations have trajectories with A to B order.)

* Complete task C, then task D.
(Demonstrations do not have trajectories in C to D
order.)

Grasp Pose: * Grasp the mug RIM (top). * Give me the mug.

Mug * Grasp the mug HANDLE. * Grasp the mug BOTTOM.
Grasp Pose: * Grasp the bottle on LEFT side. e LIFT the bottle.

Bottle * Grasp the bottle on RIGHT side. * Grasp the bottle BOTTOM.
Grasp Pose: * Grasp the hammer HANDLE. * USE the hammer.

Hammer * Grasp the hammer HEAD. * HAND OVER the hammer.
Grasp Pose: ¢ Grasp the fork HANDLE. * PICK up the fork.

Fork * Grasp the fork HEAND. * HAND OVER the fork.

B. Real-robot Experiments

Franka Emika
Panda robot

Robotiq
2F-140 —

Supporter

Fig. 7: Real-robot experiment setup.

The real robot experiments adopted the Franka Emika robot
to grasp and manipulate different objects according to task
descriptions. The RealSense camera observed the multi-view

RGB-D images and generated point clouds as observation.

The end-effector was the Robotiq 2F-140 gripper. A supporter
was placed to lift the objects, which enlarged the workspace
of the robot arm. We filtered out the supporter in the point
cloud. For each object, we transferred the trained model in
simulation to the real robot and sampled 10 grasps for seen
and unseen task (Table [I).

One big challenge in the real-world experiment was the
partial observation of the point cloud. Unlike point clouds
sampled from simulated meshes, the camera-generated point
clouds had an uneven density over different regions. For
example, the mug handle has a sparser point cloud density
than the rim. This problem led to a strong Sim2Real gap and

failures of fine-tuned conditional models.

C. Ablation Study

We study the influence of the optimization constraint ;

in Eqn. (T4) on the performance of inpainting optimization
and provide a general method to tune this hyperparameter.

In Figure [8] we applied DISCO on a grasp pose generation
task of "Lift the bottle from the right side’. DISCO generated
a keyframe on the right side, but not closely attached to
the bottle. Our goal was to use the keyframe to guide the
diffusion policy and generate successful grasps that satisfy
the condition.

Then we varied the constraint ~; from 1075 to 10*. When
~; is relatively small 103, the generated actions align closely
with the unconditional demonstration, achieving successful
grasping, but they often fail to meet the specified conditions.
As ~; increases to 1071, inpainting optimization compels
the actions to satisfy these conditions more rigorously, but
this adherence to the keyframes can substantially lower the
success rate. Therefore, a moderate ; = 10~2 can strike an
optimal balance between condition fulfillment and alignment
with the demonstration distribution, thereby maximizing the
conditional success rate. For instance, in three cases:

e vi = 1073: Smaller v; keeps poses close to the
demonstration distribution, resulting in various grasp
positions but often failing to meet the ’right side’
requirement.

e ; = 107! Larger aligns poses closer to the keyframe
condition, but many grasps fail to lift the bottle.

e v; = 1072: Balances between the keyframe and the
demonstration distribution, achieving successful grasps
that meet the condition.

Therefore, the ~; can be generally selected by scanning its
value and optimizing it to maximize the conditional success
rate. In practice, we used y; = 10~2 for end-effector position
keyframe, v; = 10~3 for end-effector velocity, and ; = 374
for joint values.

Success rate
5
»

- o N . /
~
\\-
" g

10° 10" 10° 107 10" 10”10
Optimization Constraint y; —
Y Yi Yi= 103

Cond.
Satisfy

Uncond.

Cond. }
—— - —.—
Success

Success

Task: Lift the bottle from right side.

yi=1072 yi=1071

Fig. 8: Ablation study of inpainting optimization in grasp pose environment (keyframes omitted in the figures). As the
constraint v; increases, the generated actions increasingly satisfy the specified conditions. However, excessively high values
compromise the overall success of the task. A carefully chosen ~; balances condition satisfaction against task success.

D. Networks, Datasets and Training Details

For simulation experiments, we adapted the program
from [2] for push-T, push-block and Franka kitchen en-
vironments; and used the [25] for grasp pose generation
environments. For diffusion policy networks that predict
action sequences, we adopted the transformer-based backbone
for state-based environments. For inpainting optimization,
we formulated the convex optimization problem and utilized
CVXPY to obtain the optimal solutions. We built the language-
conditioned classifier network with text as input, followed
by tokenization and encoding [14]. For the goal-conditioned
classifier network, we augmented the network inputs with the
normalized goal state [13]. Finally, we trained the classifier
guidance networks to control the generation of diffusion

models [45].

The training datasets were adapted from [2] and [25]. We
filtered and labeled the demonstrations with task descriptions
for each environment. Note that in our experiments, we only
used demonstrations that corresponded to pre-defined task
descriptions and neglected other trajectories. In addition, we
marked the terminal state of each trajectory as the goal
state for goal-conditioned networks. For continuous action
environments, we used batch size = 256, and for the grasp
pose (single-action) environment, batch size = 2. We trained
networks in our local personal computer, that the CPU model
is Intel(R) Core(TM) i9-14900KF and the GPU model is
RTX 4090. During the training process, the average GPU
memory usage is 12GB. The average training time for the
diffusion model was 8 ~ 10 hours.

	Appendix
	Simulation Environments
	Real-robot Experiments
	Ablation Study
	Networks, Datasets and Training Details

